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Note 

On the Advantages of the Vorticity-Velocity 
Formulation of the Equations of Fluid Dynamics* 

Two distinctly different approaches have been utilized in the literature for the 
numerical solution of the equations of viscous flow in three dimensions. In the more 
common approach, the momentum equation, which contains both the velocity and 
pressure, is solved numerically along with a derived Poisson equation for the 
pressure (i.e., the pressure-velocity or primitive variable formulation [l-3]). The 
alternative approach is based on eliminating the pressure from the momentum 
equation by the application of the curl. In this manner, a vorticity transport 
equation is solved numerically in lieu of the momentum equation (i.e., the vorticity- 
velocity formulation [46]). The purpose of the present note is to explore in more 
detail the properties of these disparate numerical approaches. It will be shown that 
the vorticity-velocity formulation has a striking advantage when applied to 
problems in non-inertial frames of reference. More specifically, there exists an 
intrinsic vorticity-velocity formulation wherein all non-inertial effects (arising from 
both the rotation and translation of the frame of reference relative to an inertial 
framing) only enter into the solution of the problem through the implementation of 
initial and boundary conditions. This is in stark contrast to the pressure-velocity for- 
mulation, where non-inertial effects appear directly in the momentum equation in 
the form of Coriolis and Eulerian accelerations-a state of affairs which can give 
rise to a variety of numerical problems [2]. A detailed exposition of this interesting 
property of the vorticity-velocity formulation will be presented along with a brief 
discussion of other advantages of this approach. 

For simplicity, we will restrict our attention to the analysis of viscous incom- 
pressible flow governed by the Navier-Stokes equation and continuity equation 
which, respectively, take the form 

$ + v . vv = --VP + LV2V, 

v.v=o, (2) 

where v is the velocity vector, p is the pressure, and v is the kinematic viscosity of 
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the fluid. Here, the validity of (1) requires that the external body forces be conser- 
vative and that the frame of reference be inertial. In an a&~r~ non-inertial frame 
of reference (which can rotate with a time-dependent angular velocity n(t) and 
translate with a time-dependent velocity V,(t) relative to the origin 0 of an inertial 
framing), the Navier-Stokes equation takes the more complex form [7] 

sv 
z+v~Qv+~xr+IZx(CZxr)+ii,+2flxv= -Qp+vV’v. 

Here, r is the position vector and the non-inertial terms on the left-hand side of (3) 
are, respectively, referred to as the Eulerian, centrifugal, translational, and Coriolis 
accelerations. The continuity equation still assumes the same form (2) in any non- 
inertial frame of reference. 

By the introduction of a modified pressure P which includes the centrifugal and 
translational acceleration potentials, the non-inertial form of the Navier-Stokes 
equation (3) can be simplified considerably. More specifically, (3) can be written in 
the equivalent form 

dV 
-g+v.Qv+fixr+2Rxv= -QP+rV’v, (4) 

-where 

P = p + +(!2. r)’ - &?‘r2 + i7,. r. 

In the pressure-velocity formulation, Eq. (4) is solved in conjunction with a 
Poisson equation for the pressure which is obtained by taking the divergence ef (4). 
Hence, the governing equations to be solved numerically in this approach can be 
summarized as follows, 

SV --+v.Qv+hxr+2axv= -@P+vv’v. 

V2P = -tr(Qv .Qv) + 2!S ‘0, 

(6) 

(7~i 

subject to the initial and boundary conditions 

at r=t,, (8) 

V’VB 

P=P, 
on B. (91 

In (7) and (9), tr( .) denotes the trace, o is the vorticity vector, and B denotes the 
boundary surface of the region. Of course, Eqs. (6) and (7) must be solved subject 
to the continuity equation (2). Hence, the solution for the velocity v must be projec- 
ted in some suitable fashion onto the space of solenoidal vectors (of course. the 
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continuity equation can be satisfied identically by the use of a stream function for 
plane and axisymmetric flows or by the use of a vector potential for more general 
flows). 

It is quite clear that the forms of (6) and (7) (and, hence, their mathematical 
character) change depending on whether or not the frame of reference is inertial. 
Consequently, a particular numerical algorithm which works well for a given class 
of flows in an inertial frame of reference may not do so for the same class of flows in 
a non-inertial framing.’ It will now be demonstrated that the vorticity-velocity 
formulation does not suffer from this deficiency. 

The vorticity-velocity formulation is based on the vorticity transport equation 
which is obtained by taking the curl of (4). This equation takes the form 

~+“.vw=w.vv+sV2”+2*.v”-2h (10) 

in any non-inertial frame of reference, where 

o=vxv (11) 

is the vorticity vector. It is clear that the velocity and vorticity are also connected 
through the Poisson equation 

V’v= -vxo, wj 
which is a direct consequence of the vector identity 

vx(vxv)=v(v.v)-V’v. (13) 

The intrinsic vorticity W, defined by 

W=o+2~, (14) 

can be introduced which represents the vorticity relative to an inertial frame of 
reference. Since R is spatially homogeneous (i.e., VR = 0), it is a simple matter to 
show that the non-inertial form of the vorticity-velocity formulation can be written 
as follows: 

~+v.vw=w.vv+vv’w, (15) 

V”v= -vx w. (16) 

’ For example, two-level explicit finite difference schemes such as upwind differencing which have been 
used successfully in the description of two-dimensional viscous flows in an inertial framing are unstable 
in rotating frames due to the Coriolis terms (for stability, three-level schemes should be used where the 
Coriolis terms are centered in time; see Williams [2]). 
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Equations (15)-( 16) must be solved (in some region R with a boundary surface B) 
subject to the initial and boundary conditions 

W=(Vxv),+2Q2, at t=t,, (17) 

v = vg 

W=(Vxv),+2R 1 
on 3. 

Of course, it is well known that the vorticity, as well as the intrinsic vorticity, are 
solenoidal, i.e., 

v.w=o, (19) 

and, hence, the solutions for W and v must, in some suitable fashion, he projected 
onto the space of solenoidal vectors. 

This vorticity-velocity formulation of fluid dynamics represented by Eqs. (15)- 
(18) has the striking property that non-inertiul effects only enter irzto the solution qf 
the problem through the itxplementation oj initial and boundary conditions. Con- 
sequently, the basic structure of the numerical algorithm (i.e., the numerical for- 
mulation of (15)-( 16)) will be independent of whether or not the frame of reference 
is inertial-a situation which greatly enhances the general applicability of any 
Navier-Stokes computer code which is developed based on this approach. 

At this point, a few comments should be made concerning the alternate ways in 
which the velocity field can be calculated in the vorticity-velocity formulation. 
Instead of solving the Poisson equation (16), it is possible to solve the defining 
equation for vorticity directly, i.e., 

vxv=o=w-2Q (20) 

(see Gatski, Grosch, and Rose [6, S] ). Of course; for plane or axisymmetric flows. 
there exists a stream function $ such that [7] 

v=kxV$. (zl) 

Vx(axv*)=W-2Q, (,22i 

where h = Vx and x is the coordinate that the flow is independent of (for plane 
flows, (22) reduces to the Poisson equation V’$ = W- 252). While the motion of 
the frame of reference does enter into the equations of motion in these alternate 
vorticity-velocity formulations, it does so in a much less significant way than in the 
pressure-velocity formulation. To be specific, the transport equation which is solved 
(i.e., Eq. (15)) does not contain any frame-dependent terms and, at each time step, 
the partial differential equation for the determination of the velocity field is only 
altered by the addition of a constunt forcing function in the form of 2Q (the added 
term on the right-hand side of (20) and (22 )). 

Finally, it would be of value to mention some other advantages of the vorticity- 
velocity formulation. More difficulties have been known to arise in the implemen- 
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tation of pressure boundary conditions than vorticity boundary conditions Cl, 21 
(of course, both boundary conditions must usually be derived). Difficulties in 
satisfying the continuity equation in the pressure-velocity formulation have also 
been known to give rise to numerical instabilities [l]. Furthermore, in the 
vorticityPvelocity approach, the vorticity vector is calculated directly. This is of 
considerable value since the vorticity field can play an important role in charac- 
terizing certain features of turbulence [9]. While it is certainly not being suggested 
that the pressure-velocity formulation be abandoned, this study does indicate that 
the vorticity--velocity formulation can have distinct advantages when applied to an 
important class of viscous flows. 
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